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Increasing urbanization around the globe is leading to concern over the loss of tree canopy within cities,
but quantifying urban forest canopy cover can be difficult. We discuss methods of assessing canopy cover
within cities, and then use a case study of Seattle, WA, USA to examine issues of uncertainty in canopy
cover assessment. We find that uncertainty is often not reported, and when reported, may be biased. Based
on these findings, we provide a list of recommendations for those undertaking canopy cover assessment
in complex urban environments.
ntroduction

The amount of tree canopy within a city has become a grow-
ng concern in municipalities worldwide as urbanization has
ed to land-use conversion and a corresponding loss of urban
orests (Pauchard et al., 2006; Nowak et al., 2010). The benefits
f tree canopy in mitigating the negative effects of air pollution,
tmospheric carbon dioxide, storm water runoff, and other envi-
onmental problems (Xiao et al., 2000; Brack, 2002) have led to an
ncreasing desire to stop or reverse the losses in canopy cover to
rovide a public benefit. In addition, tree canopy has been found to
ositively impact social factors such as human health, property val-
es, and well-being (Ulrich et al., 1991; Tzoulas et al., 2007; Wolf,
007). Potential negatives of urban forests such as property hazard
nd loss of garden space are often overlooked, but the overwhelm-
ng trend is to associate tree canopy with a societal benefit.

Municipalities have sought to precisely quantify these benefits
o understand the value of their urban forests and set management
oals (McPherson et al., 2011). While any number of measures can
e used to quantify canopy, the simplest and most often used is
he percent canopy cover (CC). This is a measure of the fractional
rojected area of tree canopy above ground-level expressed as a
ercentage ranging from 0 to 100 (Walton et al., 2008). It should
e noted that there are issues with the implementation of CC as
measure: the term is often confused with canopy closure, there

s often confusion as to whether inter-leaf gaps within a canopy

hould be accounted for or ignored, and it is often unclear where
he threshold lies between tree canopy and the canopies of shrubs
nd other low vegetation (Jennings et al., 1999). For example, an
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investigator measuring CC from the ground will be better able to
directly observe the tree/shrub height threshold and observe or
measure smaller gaps in the canopy (King and Locke, 2013) than an
investigator interpreting an aerial photograph with 0.5 ft pixel res-
olution. Despite these issues, the CC measure is still widely adopted,
and can serve as a useful benchmark for assessing a municipality’s
quantity of urban forest.

Methodologies of canopy cover assessment

The methodologies most often used to assess urban forest CC fall
into two groups: remote sensing based raster methods that pro-
duce a census of a city’s land cover, and sampling-based methods
that estimate city-wide CC via a subset of points or plots within a
city. Walton et al. (2008) provided a thorough overview of remote
sensing techniques, highlighting the various methods based on
aerial and satellite imagery. In these cases, raster surfaces are used
to either classify a scene into canopy and non-canopy components,
or used to directly estimate the amount of CC within each pixel.
Of note among remote sensing-based methods is the increasing
use of both object-based image analysis (OBIA) techniques and
aerial LiDAR (Light Detection and Ranging). OBIA is a technique
that breaks an aerial or satellite image into individual clusters of
pixels (segments) and then classifies those segments based on rules
related to color, shape, or texture to identify areas of canopy cover.
Aerial LiDAR datasets consist of a three-dimensional point cloud
collected using an airplane or helicopter that can be used to pro-
duce rasters of CC and the related leaf area index (LAI) alone or in
conjunction with imagery (Riaño et al., 2004; Lee and Lucas, 2007;

Richardson et al., 2009). OBIA and LiDAR can also be combined to
produce estimates of CC (MacFaden et al., 2012).

Sampling-based methods are different in that they rely on
sampling CC to produce areal wide-estimates. They require less
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echnology and the individual samples are often considered to be
true” since technicians are manually measuring CC. Sampling is
ften performed in the field using fixed radius plots or based on
anual photo interpretation of remotely sensed imagery (USDA

orest Service, 2012). Sampling-based methods rely on a sampling
esign and statistical inference to arrive at city-wide estimates of
C. Because of the perception that field or photo interpretation
ased methods are more accurate, these methods are often used
o assess the accuracy of CC derived from a remote sensing based
aster methodology. A field-based census of all trees within a city
ould potentially be also used to assess CC, but methods to obtain
uch a census, such as those utilizing citizen scientists, are only in
heir infancy (Urban Forest Map, 2012).

No matter the method used to assess CC for a municipality, the
stimate will contain some uncertainty. One difficulty is in how
o quantify, express, and interpret this uncertainty (Atkinson and
oody, 2006), a set of issues further confounded by the complex-
ties facing municipalities that may have political and economic
ressures to achieve a certain level of CC. A long history of canopy
ssessment in Seattle, WA USA serves as a case study for exploring
ssues of uncertainty in CC assessment.

istory of canopy cover assessment in Seattle

The city of Seattle has a climate that is well suited for growing
arge trees. The area of the city was almost completely logged by
he early 20th century, but contains many mature second-growth
rees and an extensive network of parks and green spaces. Rapid
rbanization in Seattle and the surrounding region in the last 40
ears has led to land-use change and a subsequent loss of canopy
American Forests, 1999; Alberti et al., 2004). The initial reports of
anopy loss led the City of Seattle to produce an Urban Forest Man-
gement Plan that called for increasing the city wide CC from 18%
n 2004 to 30% by 2037 (City of Seattle, 2007). The plan cited CC
f 40% in Seattle in 1972, although the accuracy of that estimate
s unclear. Several studies have been performed since the Manage-

ent Plan was published. The City of Seattle commissioned NCDC
maging (no longer in business) in 2008 to produce two CC esti-

ates for 2002 and 2007. The company created categorical rasters
f land use. The canopy portions of these maps were summed to
roduce CC estimates of 22.5% in 2002 and 22.9% in 2007 (NCDC

maging, 2009). An i-Tree Eco analysis was performed in 2010 to
uantify urban ecosystem services, and also produced a CC esti-
ate of 26.3% (Ciecko et al., 2012). As part of the present paper, the

uthors created their own CC estimate for Seattle using an OBIA
ethod, estimating CC at 29.6%. A point-based accuracy assess-
ent of the OBIA method yielded a CC estimate of 26.3%. The i-Tree

anopy web application (USDA Forest Service, 2012), which uses
point-based methodology, was also used by the authors of this

tudy to produce a CC estimate of Seattle in 2012 of 28.5%.

essons from Seattle

Table 1 shows a large variation in assessed Seattle CC over
ime, with multiple values for identical dates such as 1972, 2002
nd 2009. While it is possible that a trend may exist within these
ndings, it is difficult to draw conclusions without a measure of
ncertainty.

merican Forests Assessments
Assessments used to determine the 1972 (15%) and 1996
C (10% and 13%) values relied on classification methods based
n Landsat imagery and limited plot-based sampling (American
orests, 1999). Nowak and Greenfield (2010) found that percent
& Urban Greening 13 (2014) 152–157 153

tree cover from the 2001 National Land Cover Database, which also
uses Landsat imagery, significantly underestimated CC in devel-
oped lands by an average of 13.7% nationally. The relatively coarse
pixel size of Landsat (30 m) can cause difficulty in urban areas,
where individual and small clumps of trees dominate the canopy
(Nowak and Greenfield, 2010) The plot-based method used to esti-
mate CC in 1996 is based on 7 small rectangular plots within
the city manually interpreted from aerial photos. While the sites
were selected to represent the variability across the city, no sites
within parks were obtained. This, coupled with the low sample size
decreases the certainty of this estimate as a representation of mean
city-wide CC.

A CC estimate of 40% was also reported for 1972 in the Urban
Forest Management Plan (City of Seattle, 2007). The source of this
value is unclear, but it may be a representation of the change in the
broader Seattle metropolitan area captured in a (1998) American
Forests report. If this is the case, the definition of the boundary
of Seattle may be a source of uncertainty. A search for publicly
available GIS data, for example, provides at least two different poly-
gon boundary files for the city. The city-limits have also changed
over time as neighborhoods were annexed (City of Seattle, 2012).
These boundary-related sources of uncertainty can have a signifi-
cant effect on the reported city-wide CC value.

Remote sensing raster based methods

Two assessments for 2002 and one assessment for 2007 relied on
producing raster maps of CC derived from remote sensing and other
geospatial data. Detailed methodologies were not published for
any of the assessments, nor were accuracy assessments conducted
(City of Seattle, 2007; NCDC Imaging, 2009). It is not uncommon
for studies prepared for a non-academic audience to omit methods
and accuracy assessments, but it also makes assessing uncertainty
nearly impossible.

An (OBIA) approach was used in this study to produce a cate-
gorical raster map containing categories of tree, grass and scrub,
bare ground, buildings, and ground impervious. Datasets used for
this classification included: 2009 NAIP four band imagery, 2003
aerial LIDAR, City of Seattle polygon buildings layer, road polygon
layer, and a polygon layer of major water bodies. By summing all
the tree pixels within a finished classification and dividing by the
total number of pixels for Seattle, a CC value of 29.6% was derived.
Fig. 1 shows a map of CC for Seattle. While this result came from
a census rather than a sample, biases are still present. One way
to identify bias is by performing an accuracy assessment. 1000
points were randomly located within Seattle and assigned a class
by a trained photo interpreter using 2009 0.5 ft Aerials Express true
color imagery and georeferenced oblique angle aerial photographs.
The accuracy assessment is presented as an error matrix (Table 2).

This error matrix reveals several interesting statistics pertinent
to CC. First, it shows 79.5% of the reference points were correctly
classified as trees in the OBIA map (Producer’s Accuracy). Secondly,
it shows that 74.7% of the 1000 points that were coincident with
a portion of the OBIA map classified as a tree were reference trees
and not one of the other classes (User’s Accuracy). Confusion with
grass provided the largest source of misclassification of trees. Since
producer’s accuracy was greater than user’s accuracy, more errors
of commission occurred than omission and thus the OBIA map was
biased toward an overestimate of CC.

Fig. 2 provides a different illustration of uncertainty within the
classification. In Fig. 2, the percentage of tree canopy for 223 0.04 ha
circular plots derived from the 2009 OBIA classification is compared

to ocular estimates of canopy cover collected on the ground. This
allows an interpretation of the precision of the OBIA CC estimates,
as well as bias. A linear regression shows that LULC explains 69%
of the variability within the ocular estimates of CC, with a RMSE of
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Table 1
Estimates of city-wide canopy cover for Seattle. (RS, remote sensing; GS, ground sampling).

Year Canopy cover estimate Method Data source Citation

1972 15% Landsat Sub-pixel RS, Landsat American Forests (1999)
1972 40% Unknown RS, Landsat City of Seattle (2007)
1996 10% Landsat Sub-pixel RS, Landsat American Forests (1999)
1996 10% Plot-based photo interpretation RS, Aerial Photos American Forests (1999)
2002 18% LiDAR Analysis RS, 2000 LiDAR City of Seattle (2007)
2002 22.5% Categorical Raster Creation RS, Unknown NCDC Imaging (2009)
2007 22.9% Categorical Raster Creation RS, Unknown NCDC Imaging (2009)
2009 26.4% Point-based Random Sample RS, 2009 Aerial Photos This Study
2009 29.6% Categorical Raster Creation RS, 2003 LiDAR, 2009 Aerial Photos, Polygon Features This Study
2010 26.3% i-Tree Eco Plots GS Ciecko et al. (2012)
2012 28.5% i-Tree Canopy Point-based Random Sample RS, Google Maps This Study

Fig. 1. Visualization of canopy cover pattern in Seattle derived from a categorical raster of land use/land cover. Pixels are 1 m2.
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Table 2
Error matrix showing accuracy for a categorical raster map of land use land cover in Seattle. Overall accuracy was 74.00%, and the Khat was 0.64.

Classification data

Building Impervious Trees Grass Water Bare ground Total Producer’s accuracy

Reference data
Building 148 42 17 3 1 1 212 69.81%
Impervious 11 288 18 10 0 0 327 88.07%
Trees 5 29 210 20 0 0 264 79.55%
Grass 2 72 36 73 0 0 183 39.89%
Water 0 0 0 0 7 0 7 100.0%
Bare Ground 0 5 0 2 0 0 7 0%
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Total 166 436 281 108
User’s accuracy 89.16% 66.06% 74.73% 67
Khat 0.86 0.50 0.62 0

9%. The regression also suggests that the OBIA map overestimates
C compared to field measured CC.

lot and point-based assessments

Several assessments have relied on points or plots to provide a
ample of CC within the City of Seattle, and then have used that
ample to estimate CC for the whole city. The 2010 i-Tree Eco Anal-
sis for Seattle produced a CC assessment based on 223 randomly
elected plots stratified by city management unit (Ciecko et al.,
012). One ocular estimate of CC, measured in categories of 5%,
as observed at each 0.04 ha plot following the i-Tree Eco protocol,

s well as individual tree biophysical variables (i-Tree). We could
ot find a published source that describes how the i-Tree Eco soft-
are produces city-wide estimates of CC given the field sampling
esign. i-Tree also produces a free online tool, i-Tree Canopy that
an be used to quickly produce a CC assessment using freely avail-
ble remote sensing data from Google Maps (USDA Forest Service,
011). We performed an assessment for 1000 points generated by

-Tree Canopy by visually classifying each point as canopy or non-
anopy. The application provided a CC estimate of 28.5% with a
tandard error of 1.4%. Confidence intervals may be more a more
asily interpretable measure of uncertainty. The 95% confidence
nterval for the 28.5% CC estimate falls between 25.7% and 31.3%.
ig. 3 shows the relationship between increasing sample size and
he decreasing range of the 95% confidence interval. The accuracy
ssessment conducted for the OBIA classification also provides a

oint-based measure of CC. Like the i-Tree Canopy analysis, 1000
oints were visually classified into canopy and non-canopy using
erial imagery. Instead of Google Map imagery, we utilized high

ig. 2. Comparison of ocular estimates of tree cover collected on the ground to
anopy cover derived from a categorical raster map of land use land cover for Seattle.
olid line is the best fit least squares regression and the dotted line represents unity.
8 1 1000
87.5% 0.00%

0.87 0.00

resolution aerial imagery collected in 2009 with a 1 ft pixel resolu-
tion, producing a CC estimate of 26.3% (Table 2).

Both the i-Tree Canopy and OBIA accuracy assessment point-
based methods should provide unbiased estimates of CC assuming
the points can be classified without bias or error. We have identified
two potential sources of error in the classification of aerial photog-
raphy used in this study: relief displacement and errors based on
interpretation uncertainty. Relief displacement causes tall objects
to appear displaced outward from their true location. In Seattle,
trees are often the tallest object in a scene, and thus are strongly
affected by relief displacement. The net effect of canopy relief dis-
placement is that more area is covered by canopy in an aerial
photograph than would be expected by a ground survey. Since
trees in Seattle often grown singly or in small clusters, the effect
of relief displacement is greater than in larger, more continuous
forests because more non-canopy area is obscured by the displaced
tree canopy. We also noticed a difference in the magnitude of
relief displacement between the 2009 aerial imagery and the 2012
Google Maps imagery through a visual comparison of the two sets
of imagery. Since relief displacement is more pronounced as the
distance of an object from the location of the camera increases, not
all trees will be affected by relief displacement to the same degree.
Fig. 4 shows an example of relief displacement for a pair of tall
trees in Seattle as seen in both the 2009 and 2012 imagery. The
greater relief displacement observed in the Google Maps imagery
compared to the aerial imagery is a possible explanation for the
larger CC estimate derived from i-Tree Canopy (Table 1).

Interpretation errors are a result of the inability of the analyst
to classify a point with complete certainty. We found that three

issues affected the ability of the analyst to classify points with cer-
tainty: shadows, edges, and vegetation height. Table 3 details the
129 instances of uncertainty encountered by the analyst during the

Fig. 3. Changes in Seattle city-wide canopy cover estimate with the addition of
random points within the city. Upper and lower 95% confidence intervals are given
by dotted lines.
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ig. 4. Two images used for classification showing relief displacement of tree can
ollected by Aerials Express for King County in 2009.

-Tree Canopy analysis. Table 3 also shows if the analyst chose to
lassify the point as canopy or non-canopy, in order to help identify
ny biases in the analysis. Uncertainty due to height was caused by
he inability of the analyst to determine if the vegetation met a cer-
ain height threshold to be considered tree canopy. An analyst can
se shadows and other contextual information to judge the height
f a tree, shrub, or low scrub such as brambles, but in many situ-
tions the height is not clear. In this study, we chose an arbitrary
eight threshold of 3 m to separate trees from other low vegeta-
ion. Uncertainty due to edge was a result of the point falling on or
ear the boundary between canopy and non-canopy. In a heteroge-
eous urban forest, these edges are very common. Lastly, shadowed
reas in the image are difficult to classify. Large trees and buildings
ast large shadows, making the boundary area between canopy and
on-canopy classes in shadowed points difficult to ascertain. Over-
ll, 65 uncertain points were classified as canopy and 64 uncertain
oints as non-canopy. This suggests that interpretation errors did
ot strongly bias the i-Tree Canopy CC results. The sub categories
f uncertainty attribution do show that the analyst tended to clas-

ify uncertain points in shadow and on the edge as non-canopy and
oints of uncertain height as canopy. The analyst strongly favored

able 3
ategorization of all photo-interpreted points not classified with 100% certainty.

Classification

Canopy Non-canopy

Attribution of uncertainty
Height 19 13
Edge 15 19
Shadow 6 10
Edge/shadow 8 12
Edge/height 7 6
Height/shadow 1 2
Edge/height/shadow 0 1
Interior forest canopy 9 1

Totals 65 64
he top image is from Google Maps used by iTree Canopy. The bottom image was

classifying points that fell in shadowed areas within dense forests
(Interior Forest Canopy) as canopy.

Conclusions and recommendations

We have demonstrated some of the complexities of assessing CC
in municipal environments. The case study of Seattle highlights that
uncertainties exist in all CC estimates independent of methodology
used, and that it can be difficult to quantify the level of uncertainty.
This presents a potential problem for those interested in accurate
estimates of CC, especially when policy decisions and/or funding are
tied to the level of CC in a city. In the case of Seattle, no assessment
to date has produced a CC assessment with a clear quantification
of uncertainty: The raster based American Forests estimates do
not contain accuracy assessments and the plot-based estimate is
limited by small, unrepresentative samples. The image interpreted
point-based estimates are biased by relief displacement and also
subject to uncertainty in the interpretation of more than 10% of
points (Table 3). Categorical raster based measures either lack accu-
racy assessments or rely on accuracy assessments derived from
uncertain point-based assessments. Point-based estimates are the-
oretically well suited to providing unbiased estimates of CC with
quantifiable uncertainty through confidence intervals, but points
must be classified accurately, which can be difficult.

We present the following recommendations as a guide to deci-
sion makers when faced with embarking upon or interpreting data
related to municipal CC:

• Acknowledge that all CC estimates contain uncertainty. If the
uncertainty cannot be reported quantitatively, provide a quali-
tative description of potential sources of uncertainty.

• Inspect the geography of the boundary used to determine the
extent of the municipality. Ensure that the boundary is consistent

if multiple CC estimates are to be compared.

• When comparing CC estimates for different years, compare
uncertainties. If uncertainties are large or unknown for any of the
dates in question, observed differences may not be significant.
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See Nowak and Greenfield (2012) for a broader discussion of
quantifying canopy cover change.
If field collected data point or plot data were used, ensure that a
large number of plots were collected.
If a raster of CC was created, ensure than an accuracy estimate
was performed.
Record the methodology used to conduct the CC assessment. This
should be sufficiently detailed that an independent investigator
can reproduce the assessment.
A random sample of points presents an unbiased method for
assessing CC, but may require large numbers of points to achieve
a high degree of certainty.
Assessing points using aerial imagery may impart biases toward
higher CC due to relief displacement. Visually assess imagery to
determine the severity of relief displacement. Future research
could be directed toward developing the quantifiable measures
of relief displacement, and methods of correction.
It can be difficult and imprecise to differentiate between trees,
shrubs, and grass and low vegetation from aerial imagery due
to the difficulty in assessing heights. Consider using a canopy
height model derived from aerial LiDAR to aid in this classi-
fication. Alternatively, uncertain points can be visited in the
field.
Aerial imagery will be interpreted with greater certainty if it can
be collected so shadows are minimized and resolution is high.
Aerial LiDAR can be of aid if available and collected at the same
time as the imagery.

Future research can help to refine methodologies of assessing
C in heterogeneous urban environments. Improvement in remote
ensing technologies, such as the continuing development of
oogle Earth can improve the quality of imagery publicly avail-
ble, thereby making accuracy assessments derived from manual
nterpretation more accurate. Methods should also be developed
o eliminate or correct relief displacement from aerial and satellite
magery. Lastly, improvements in partnerships between munic-
palities and academic institutions can increase the rigor of CC
ssessments.
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